Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Amit Shyam
- Ying Yang
- Alex Plotkowski
- Ryan Dehoff
- Alice Perrin
- James A Haynes
- Steven J Zinkle
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Andres Marquez Rossy
- Benjamin Lawrie
- Brian Post
- Bruce A Pint
- Chengyun Hua
- Christopher Fancher
- Christopher Ledford
- Claire Marvinney
- Costas Tsouris
- David S Parker
- Dean T Pierce
- Gabor Halasz
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Jay Reynolds
- Jeff Brookins
- Jiaqiang Yan
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Michael Kirka
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Petro Maksymovych
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Srikanth Yoginath
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.