Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit Shyam
- Ying Yang
- Alex Plotkowski
- Hongbin Sun
- Ryan Dehoff
- Alice Perrin
- James A Haynes
- Prashant Jain
- Steven J Zinkle
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Andres Marquez Rossy
- Benjamin Lawrie
- Brian Post
- Bruce A Pint
- Chengyun Hua
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Dean T Pierce
- Gabor Halasz
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Ian Greenquist
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Jiaqiang Yan
- Jong K Keum
- Jovid Rakhmonov
- Michael Kirka
- Mina Yoon
- Nate See
- Nicholas Richter
- Nithin Panicker
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Petro Maksymovych
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Thien D. Nguyen
- Tim Graening Seibert
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.