Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Adam M Guss
- Ali Passian
- Josh Michener
- Benjamin Manard
- Liangyu Qian
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Cyril Thompson
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander I Wiechert
- Alex Roschli
- Alex Walters
- Austin Carroll
- Brian Sanders
- Charles F Weber
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Kitty K Mccracken
- Kyle Davis
- Matt Vick
- Mengdawn Cheng
- Nance Ericson
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Soydan Ozcan
- Srikanth Yoginath
- Tyler Smith
- Vandana Rallabandi
- Varisara Tansakul
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.