Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam M Guss
- Costas Tsouris
- Andrew Sutton
- Gabriel Veith
- Guang Yang
- Josh Michener
- Michelle Kidder
- Michelle Lehmann
- Radu Custelcean
- Beth L Armstrong
- Gyoung Gug Jang
- Lawrence {Larry} M Anovitz
- Liangyu Qian
- Robert Sacci
- Tomonori Saito
- Alexander I Wiechert
- Austin L Carroll
- Ethan Self
- Gs Jung
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Michael Cordon
- Serena Chen
- Sergiy Kalnaus
- Xiaohan Yang
- Ajibola Lawal
- Alexandra Moy
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Andrzej Nycz
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Benjamin Manard
- Canhai Lai
- Carrie Eckert
- Chanho Kim
- Charles F Weber
- Clay Leach
- Dhruba Deka
- Felipe Polo Garzon
- Georgios Polyzos
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Ilias Belharouak
- James Parks II
- Jay D Huenemann
- Jeffrey Einkauf
- Joanna Mcfarlane
- Joanna Tannous
- Jonathan Willocks
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Kyle Davis
- Logan Kearney
- Matthew S Chambers
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nihal Kanbargi
- Paul Abraham
- Peng Yang
- Sai Krishna Reddy Adapa
- Sreshtha Sinha Majumdar
- Udaya C Kalluri
- Vandana Rallabandi
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Xiang Lyu
- Yang Liu
- Yeonshil Park

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.