Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Adam M Guss
- Gabriel Veith
- Josh Michener
- Beth L Armstrong
- Guang Yang
- Lawrence {Larry} M Anovitz
- Liangyu Qian
- Michelle Lehmann
- Robert Sacci
- Tomonori Saito
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Ethan Self
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Sergiy Kalnaus
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander I Wiechert
- Alexandra Moy
- Alexey Serov
- Alex Roschli
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Austin Carroll
- Benjamin L Doughty
- Benjamin Manard
- Brian Sanders
- Chanho Kim
- Charles F Weber
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Erin Webb
- Evin Carter
- Felipe Polo Garzon
- Georgios Polyzos
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- Jonathan Willocks
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Kitty K Mccracken
- Kyle Davis
- Logan Kearney
- Matthew S Chambers
- Matt Vick
- Mengdawn Cheng
- Michael Toomey
- Nancy Dudney
- Nandhini Ashok
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Peng Yang
- Sai Krishna Reddy Adapa
- Soydan Ozcan
- Tyler Smith
- Vandana Rallabandi
- Vera Bocharova
- Vincent Paquit
- Xiang Lyu
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.