Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Ying Yang
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Alice Perrin
- Costas Tsouris
- Kyle Kelley
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alexander Enders
- Alexander I Wiechert
- Alex Plotkowski
- Amit Shyam
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Benjamin Manard
- Bruce A Pint
- Charles F Weber
- Chengyun Hua
- Christopher Ledford
- Christopher S Blessinger
- David S Parker
- Gabor Halasz
- Gerd Duscher
- Gerry Knapp
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Isaac Sikkema
- James A Haynes
- Jiaqiang Yan
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junghyun Bae
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Vick
- Michael Kirka
- Mina Yoon
- Mingyan Li
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Radu Custelcean
- Rose Montgomery
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Stephen Jesse
- Sumit Bahl
- Sumner Harris
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Utkarsh Pratiush
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.