Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Adam M Guss
- Josh Michener
- Kyle Kelley
- Liangyu Qian
- Rama K Vasudevan
- Andrzej Nycz
- Austin L Carroll
- Eddie Lopez Honorato
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Ryan Heldt
- Serena Chen
- Sergei V Kalinin
- Stephen Jesse
- Tyler Gerczak
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Biruk A Feyissa
- Bogdan Dryzhakov
- Callie Goetz
- Carrie Eckert
- Chris Masuo
- Christopher Hobbs
- Clay Leach
- Debjani Pal
- Fred List III
- Gerald Tuskan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Jamieson Brechtl
- Jay D Huenemann
- Jewook Park
- Joanna Tannous
- Kai Li
- Kashif Nawaz
- Keith Carver
- Kevin M Roccapriore
- Kyle Davis
- Liam Collins
- Marti Checa Nualart
- Matt Kurley III
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Paul Abraham
- Richard Howard
- Rodney D Hunt
- Saban Hus
- Steven Randolph
- Thomas Butcher
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Yang Liu
- Yongtao Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.