Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Srikanth Yoginath
- Ali Abouimrane
- Eddie Lopez Honorato
- James J Nutaro
- Pratishtha Shukla
- Ruhul Amin
- Ryan Heldt
- Sudip Seal
- Tyler Gerczak
- Ali Passian
- Bryan Lim
- Callie Goetz
- Christopher Hobbs
- David L Wood III
- Fred List III
- Georgios Polyzos
- Harper Jordan
- Hongbin Sun
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Junbin Choi
- Keith Carver
- Lu Yu
- Marm Dixit
- Matt Kurley III
- Nance Ericson
- Pablo Moriano Salazar
- Peeyush Nandwana
- Pradeep Ramuhalli
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Thomas Butcher
- Tomas Grejtak
- Varisara Tansakul
- Yaocai Bai
- Yiyu Wang
- Zhijia Du

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.