Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Josh Michener
- Liangyu Qian
- Brian Sanders
- Bruce Moyer
- Debangshu Mukherjee
- Debjani Pal
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- Jerry Parks
- John F Cahill
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Md Inzamam Ul Haque
- Mike Zach
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Paul Abraham
- Sandra Davern
- Serena Chen
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The invention provides on-line analysis of droplets for mass spectrometry.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.