Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Eddie Lopez Honorato
- Luke Meyer
- Ryan Dehoff
- Ryan Heldt
- Tyler Gerczak
- Adam Stevens
- Alex Walters
- Alice Perrin
- Amy Elliott
- Callie Goetz
- Cameron Adkins
- Christopher Hobbs
- Christopher Ledford
- Erin Webb
- Evin Carter
- Fred List III
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Keith Carver
- Kitty K Mccracken
- Liam White
- Matt Kurley III
- Michael Borish
- Michael Kirka
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peter Wang
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Thomas Butcher
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.