Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Peeyush Nandwana
- Alice Perrin
- Amir K Ziabari
- Benjamin Lawrie
- Beth L Armstrong
- Brian Post
- Chengyun Hua
- Corson Cramer
- David S Parker
- Fred List III
- Gabor Halasz
- James Klett
- Jiaqiang Yan
- Keith Carver
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.

A diver-operated system brings safe and portable imaging to a new operating environment – underwater at depths up to 300 feet.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.