Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Eddie Lopez Honorato
- Jaswinder Sharma
- Marm Dixit
- Nance Ericson
- Ruhul Amin
- Ryan Heldt
- Tyler Gerczak
- Xiang Lyu
- Aaron Werth
- Ali Passian
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Callie Goetz
- Christopher Hobbs
- David L Wood III
- Emilio Piesciorovsky
- Fred List III
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Junbin Choi
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Matt Kurley III
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Raymond Borges Hink
- Richard Howard
- Ritu Sahore
- Rodney D Hunt
- Srikanth Yoginath
- Thomas Butcher
- Todd Toops
- Varisara Tansakul
- Yaocai Bai
- Yarom Polsky
- Zhijia Du

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.