Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Eddie Lopez Honorato
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Ryan Heldt
- Stephen M Killough
- Tyler Gerczak
- Vincent Paquit
- Alexander Enders
- Alexander I Wiechert
- Benjamin Manard
- Bryan Maldonado Puente
- Charles F Weber
- Christopher Hobbs
- Christopher S Blessinger
- Corey Cooke
- Costas Tsouris
- Derek Dwyer
- Gina Accawi
- Gurneesh Jatana
- Joanna Mcfarlane
- Jonathan Willocks
- Junghyun Bae
- Louise G Evans
- Mark M Root
- Matt Kurley III
- Matt Vick
- Mengdawn Cheng
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Paula Cable-Dunlap
- Peter Wang
- Richard L. Reed
- Rodney D Hunt
- Ryan Kerekes
- Sally Ghanem
- Vandana Rallabandi

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.