Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Amit K Naskar
- Hongbin Sun
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Annetta Burger
- Arit Das
- Benjamin L Doughty
- Carter Christopher
- Chance C Brown
- Christopher Bowland
- Debraj De
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gautam Malviya Thakur
- Holly Humphrey
- Ilias Belharouak
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Robert E Norris Jr
- Rob Root
- Ruhul Amin
- Sam Hollifield
- Santanu Roy
- Sumit Gupta
- Thien D. Nguyen
- Todd Thomas
- Uvinduni Premadasa
- Vera Bocharova
- Vishaldeep Sharma
- Xiuling Nie

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.