Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Vlastimil Kunc
- Ahmed Hassen
- Annetta Burger
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Corey Cooke
- Dan Coughlin
- Debraj De
- Gautam Malviya Thakur
- Gina Accawi
- Gurneesh Jatana
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Jim Tobin
- Josh Crabtree
- Kevin Spakes
- Kevin Sparks
- Kim Sitzlar
- Lilian V Swann
- Liz McBride
- Mark M Root
- Mark Provo II
- Merlin Theodore
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Steven Guzorek
- Subhabrata Saha
- Todd Thomas
- Vipin Kumar
- Xiuling Nie

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).