Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Hongbin Sun
- Prashant Jain
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debraj De
- Gautam Malviya Thakur
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- James Gaboardi
- James Klett
- Jason Jarnagin
- Jesse McGaha
- John Lindahl
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Mike Zach
- Nate See
- Nedim Cinbiz
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rob Root
- Ruhul Amin
- Sam Hollifield
- Thien D. Nguyen
- Todd Thomas
- Tony Beard
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiuling Nie

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.