Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Yaosuo Xue
- Alexander I Wiechert
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Costas Tsouris
- Debangshu Mukherjee
- Debraj De
- Fei Wang
- Gautam Malviya Thakur
- Gs Jung
- Gyoung Gug Jang
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Phani Ratna Vanamali Marthi
- Radu Custelcean
- Rafal Wojda
- Rob Root
- Sam Hollifield
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Todd Thomas
- Xiuling Nie
- Yonghao Gui

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.