Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Anees Alnajjar
- Annetta Burger
- Brian Williams
- Carter Christopher
- Chance C Brown
- Debraj De
- Gautam Malviya Thakur
- Gerald Tuskan
- Ilenne Del Valle Kessra
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mariam Kiran
- Mark Provo II
- Paul Abraham
- Rob Root
- Sam Hollifield
- Todd Thomas
- Xiaohan Yang
- Xiuling Nie
- Yang Liu

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.