Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) National Security Sciences Directorate (20)
Researcher
- Ying Yang
- Amit K Naskar
- Sam Hollifield
- Alice Perrin
- Chad Steed
- Costas Tsouris
- Jaswinder Sharma
- Junghoon Chae
- Logan Kearney
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Steven J Zinkle
- Travis Humble
- Viswadeep Lebakula
- Yanli Wang
- Yutai Kato
- Aaron Myers
- Aaron Werth
- Alexander Enders
- Alexander I Wiechert
- Alexandre Sorokine
- Alex Plotkowski
- Ali Passian
- Amit Shyam
- Annetta Burger
- Arit Das
- Benjamin Lawrie
- Benjamin L Doughty
- Benjamin Manard
- Brian Weber
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles F Weber
- Charlie Cook
- Chengyun Hua
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Christopher S Blessinger
- Clinton Stipek
- Craig Blue
- Daniel Adams
- Daniel Rasmussen
- David S Parker
- Debraj De
- Derek Dwyer
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gabor Halasz
- Gary Hahn
- Gautam Malviya Thakur
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- James A Haynes
- James Gaboardi
- James Klett
- Jason Jarnagin
- Jesse McGaha
- Jessica Moehl
- Jiaqiang Yan
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junghyun Bae
- Justin Cazares
- Kevin Spakes
- Kevin Sparks
- Kunal Mondal
- Lilian V Swann
- Liz McBride
- Louise G Evans
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Matt Larson
- Matt Vick
- Mengdawn Cheng
- Michael Kirka
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Petro Maksymovych
- Philipe Ambrozio Dias
- Radu Custelcean
- Raymond Borges Hink
- Richard L. Reed
- Robert E Norris Jr
- Rob Root
- Ryan Dehoff
- Samudra Dasgupta
- Santanu Roy
- Srikanth Yoginath
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Taylor Hauser
- Tim Graening Seibert
- Todd Thomas
- T Oesch
- Tony Beard
- Uvinduni Premadasa
- Vandana Rallabandi
- Varisara Tansakul
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiuling Nie
- Yan-Ru Lin
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).