Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Mike Zach
- Vincent Paquit
- William Carter
- Akash Jag Prasad
- Alex Walters
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Hannan
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Hsin Wang
- James Gaboardi
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Lindahl
- Joshua Vaughan
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Loren L Funk
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Peter Wang
- Polad Shikhaliev
- Ryan Dehoff
- Sandra Davern
- Theodore Visscher
- Todd Thomas
- Tony Beard
- Vladimir Orlyanchik
- Vladislav N Sedov
- Xiuling Nie
- Yacouba Diawara
- Zackary Snow

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.