Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Hongbin Sun
- Prashant Jain
- Sergei V Kalinin
- Alexander I Kolesnikov
- Alexei P Sokolov
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Ian Greenquist
- Ilias Belharouak
- John Wenzel
- Keju An
- Kevin M Roccapriore
- Liam Collins
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Maxim A Ziatdinov
- Nate See
- Neus Domingo Marimon
- Nithin Panicker
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Shannon M Mahurin
- Stephen Jesse
- Steven Randolph
- Tao Hong
- Tomonori Saito
- Victor Fanelli
- Vishaldeep Sharma
- Vittorio Badalassi
- Yongtao Liu

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Neutron beams are used around the world to study materials for various purposes.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and