Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Blane Fillingim
- Brian Post
- Eddie Lopez Honorato
- Lauren Heinrich
- Peeyush Nandwana
- Ryan Heldt
- Sudarsanam Babu
- Thomas Feldhausen
- Tyler Gerczak
- Yousub Lee
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Bekki Mills
- Callie Goetz
- Christopher Hobbs
- Costas Tsouris
- Debangshu Mukherjee
- Fred List III
- Gs Jung
- Gyoung Gug Jang
- John Wenzel
- Keith Carver
- Keju An
- Mark Loguillo
- Matthew B Stone
- Matt Kurley III
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Richard Howard
- Rodney D Hunt
- Shannon M Mahurin
- Tao Hong
- Thomas Butcher
- Tomonori Saito
- Victor Fanelli
- Vimal Ramanuj
- Wenjun Ge

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.