Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Rafal Wojda
- Alex Walters
- Joshua Vaughan
- Luke Meyer
- Prasad Kandula
- William Carter
- Brian Gibson
- Christopher Fancher
- Udaya C Kalluri
- Vandana Rallabandi
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Amit Shyam
- Bekki Mills
- Brian Post
- Bruce Hannan
- Calen Kimmell
- Chelo Chavez
- Chris Tyler
- Clay Leach
- Dave Willis
- Gordon Robertson
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- John Wenzel
- Keju An
- Loren L Funk
- Luke Chapman
- Marcio Magri Kimpara
- Mark Loguillo
- Matthew B Stone
- Mostak Mohammad
- Omer Onar
- Polad Shikhaliev
- Praveen Kumar
- Riley Wallace
- Ritin Mathews
- Shajjad Chowdhury
- Shannon M Mahurin
- Subho Mukherjee
- Suman Debnath
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vincent Paquit
- Vladimir Orlyanchik
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.