Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Hongbin Sun
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Prashant Jain
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Bruce Hannan
- Dave Willis
- Ian Greenquist
- Ilias Belharouak
- Jason Jarnagin
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Mark Provo II
- Matthew B Stone
- Nate See
- Nithin Panicker
- Peter Wang
- Polad Shikhaliev
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rob Root
- Ruhul Amin
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thien D. Nguyen
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Neutron beams are used around the world to study materials for various purposes.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and