Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Ali Passian
- Peeyush Nandwana
- Joseph Chapman
- Nicholas Peters
- Amit Shyam
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Chris Masuo
- Hsuan-Hao Lu
- Joseph Lukens
- Lauren Heinrich
- Luke Meyer
- Muneer Alshowkan
- Peter Wang
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Alex Walters
- Andres Marquez Rossy
- Anees Alnajjar
- Bekki Mills
- Brian Williams
- Bruce A Pint
- Bruce Hannan
- Bryan Lim
- Christopher Fancher
- Claire Marvinney
- Dave Willis
- Gordon Robertson
- Harper Jordan
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mariam Kiran
- Mark Loguillo
- Matthew B Stone
- Nance Ericson
- Polad Shikhaliev
- Ryan Dehoff
- Shannon M Mahurin
- Srikanth Yoginath
- Steven J Zinkle
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tim Graening Seibert
- Tomas Grejtak
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yacouba Diawara
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yun Liu
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.