Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Radu Custelcean
- Costas Tsouris
- Bruce Moyer
- Gyoung Gug Jang
- Jeffrey Einkauf
- Andrzej Nycz
- Benjamin L Doughty
- Chris Masuo
- Gs Jung
- Luke Meyer
- Nikki Thiele
- Santa Jansone-Popova
- William Carter
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Bruce Hannan
- Dave Willis
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- John Wenzel
- Jong K Keum
- Joshua Vaughan
- Keju An
- Laetitia H Delmau
- Loren L Funk
- Luke Chapman
- Luke Sadergaski
- Mark Loguillo
- Matthew B Stone
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Peter Wang
- Polad Shikhaliev
- Santanu Roy
- Saurabh Prakash Pethe
- Shannon M Mahurin
- Subhamay Pramanik
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Uvinduni Premadasa
- Vasilis Tzoganis
- Vasiliy Morozov
- Vera Bocharova
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yingzhong Ma
- Yun Liu

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.

Direct air capture (DAC) technologies that extract carbon dioxide directly from the atmosphere are critical for mitigating effects of climate change.

Selenate and selenite oxyanions are crystallized together with sulfate anions using ligands. In this approach, we will take advantage of the tendency of these similar oxyanions to co-precipitate into crystalline solid solutions.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

The technology describes an electron beam in a storage ring as a quantum computer.
