Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Srikanth Yoginath
- Andrzej Nycz
- Chris Masuo
- James J Nutaro
- Luke Meyer
- Pratishtha Shukla
- Sudip Seal
- William Carter
- Alexander I Kolesnikov
- Alexandre Sorokine
- Alexei P Sokolov
- Alex Walters
- Ali Passian
- Bekki Mills
- Bruce Hannan
- Clinton Stipek
- Daniel Adams
- Dave Willis
- Harper Jordan
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Nance Ericson
- Peter Wang
- Philipe Ambrozio Dias
- Polad Shikhaliev
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Taylor Hauser
- Theodore Visscher
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Viswadeep Lebakula
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Neutron beams are used around the world to study materials for various purposes.