Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Bekki Mills
- Bogdan Dryzhakov
- Brian Post
- Bruce Hannan
- Cameron Adkins
- Christopher Rouleau
- Costas Tsouris
- Dave Willis
- Diana E Hun
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- John Wenzel
- Jong K Keum
- Joshua Vaughan
- Keju An
- Kyle Kelley
- Liam White
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Mark M Root
- Matthew B Stone
- Michael Borish
- Mina Yoon
- Peter Wang
- Philip Boudreaux
- Polad Shikhaliev
- Radu Custelcean
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Venkatakrishnan Singanallur Vaidyanathan
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.