Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Sergei V Kalinin
- Stephen Jesse
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Bruce Hannan
- Callie Goetz
- Christopher Hobbs
- Dave Willis
- Eddie Lopez Honorato
- Fred List III
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- John Wenzel
- Joshua Vaughan
- Kai Li
- Kashif Nawaz
- Keith Carver
- Keju An
- Kevin M Roccapriore
- Liam Collins
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Matt Kurley III
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Polad Shikhaliev
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Saban Hus
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thomas Butcher
- Tomonori Saito
- Tyler Gerczak
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yongtao Liu
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Neutron beams are used around the world to study materials for various purposes.