Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Vlastimil Kunc
- Ahmed Hassen
- Kyle Gluesenkamp
- Umesh N MARATHE
- Dan Coughlin
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- Bo Shen
- David Nuttall
- Georges Chahine
- Matt Korey
- Melanie Moses-DeBusk Debusk
- Nadim Hmeidat
- Pum Kim
- Sanjita Wasti
- Steve Bullock
- Tyler Smith
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Ben Lamm
- Bogdan Dryzhakov
- Brian Post
- Brittany Rodriguez
- Cait Clarkson
- Dhruba Deka
- Erin Webb
- Evin Carter
- Gabriel Veith
- James Manley
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Kelley
- Marm Dixit
- Navin Kumar
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Sana Elyas
- Segun Isaac Talabi
- Shajjad Chowdhury
- Sreshtha Sinha Majumdar
- Steven Randolph
- Subhabrata Saha
- Tolga Aytug
- Tugba Turnaoglu
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention describes a configuration of dishwasher using thermoelectric heat pumps that can accomplish energy savings and enhanced drying performance.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.