Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Sam Hollifield
- Travis Humble
- Bogdan Dryzhakov
- Brian Weber
- Hongbin Sun
- Isaac Sikkema
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Kyle Kelley
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Nate See
- Oscar Martinez
- Prashant Jain
- Samudra Dasgupta
- Steven Randolph
- Thien D. Nguyen
- T Oesch

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.