Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Rafal Wojda
- Sergei V Kalinin
- Yongtao Liu
- Amit K Naskar
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Prasad Kandula
- Jaswinder Sharma
- Kashif Nawaz
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Stephen Jesse
- Vandana Rallabandi
- Alex Plotkowski
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Benjamin L Doughty
- Bogdan Dryzhakov
- Brian Fricke
- Christopher Bowland
- Christopher Fancher
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marcio Magri Kimpara
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Mostak Mohammad
- Neus Domingo Marimon
- Nickolay Lavrik
- Omer Onar
- Ondrej Dyck
- Praveen Kumar
- Radu Custelcean
- Robert E Norris Jr
- Saban Hus
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Shajjad Chowdhury
- Steven Randolph
- Subho Mukherjee
- Suman Debnath
- Sumit Gupta
- Sumner Harris
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Zhiming Gao

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.