Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Philip Bingham
- Ryan Dehoff
- Sergei V Kalinin
- Vincent Paquit
- Anton Ievlev
- Bogdan Dryzhakov
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Kevin M Roccapriore
- Liam Collins
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Neus Domingo Marimon
- Obaid Rahman
- Olga S Ovchinnikova
- Philip Boudreaux
- Stephen Jesse
- Steven Randolph
- Yongtao Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

A diver-operated system brings safe and portable imaging to a new operating environment – underwater at depths up to 300 feet.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.