Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Gabriel Veith
- Michelle Lehmann
- Beth L Armstrong
- Guang Yang
- Jaswinder Sharma
- Alexey Serov
- Robert Sacci
- Tomonori Saito
- Xiang Lyu
- Amit K Naskar
- Ethan Self
- Georgios Polyzos
- Khryslyn G Araño
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Sergiy Kalnaus
- Alexandra Moy
- Amanda Musgrove
- Anisur Rahman
- Anna M Mills
- Annetta Burger
- Benjamin L Doughty
- Carter Christopher
- Chance C Brown
- Chanho Kim
- Debraj De
- Gautam Malviya Thakur
- Holly Humphrey
- Ilias Belharouak
- James Gaboardi
- James Szybist
- Jason Jarnagin
- Jesse McGaha
- Jonathan Willocks
- Junbin Choi
- Jun Yang
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Marm Dixit
- Matthew S Chambers
- Meghan Lamm
- Nancy Dudney
- Ritu Sahore
- Rob Root
- Sam Hollifield
- Todd Thomas
- Todd Toops
- Vera Bocharova
- Xiuling Nie

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.