Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Gabriel Veith
- Amit K Naskar
- Benjamin L Doughty
- Beth L Armstrong
- Bruce Moyer
- Guang Yang
- Gyoung Gug Jang
- Jaswinder Sharma
- Jeffrey Einkauf
- Michelle Lehmann
- Robert Sacci
- Tomonori Saito
- Ethan Self
- Gs Jung
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Nikki Thiele
- Santa Jansone-Popova
- Sergiy Kalnaus
- Vera Bocharova
- Alexander I Wiechert
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Anisur Rahman
- Anna M Mills
- Arit Das
- Chanho Kim
- Christopher Bowland
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Georgios Polyzos
- Holly Humphrey
- Ilias Belharouak
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Jun Yang
- Khryslyn G Araño
- Laetitia H Delmau
- Luke Sadergaski
- Matthew S Chambers
- Md Faizul Islam
- Mina Yoon
- Nancy Dudney
- Parans Paranthaman
- Robert E Norris Jr
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Sumit Gupta
- Uvinduni Premadasa
- Xiang Lyu
- Yingzhong Ma

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.