Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Ahmed Hassen
- Benjamin Manard
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Robert Sacci
- Trevor Aguirre
- Vlastimil Kunc
- Cyril Thompson
- Ethan Self
- Jaswinder Sharma
- Sergiy Kalnaus
- Steven Guzorek
- Alexander I Wiechert
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brittany Rodriguez
- Chanho Kim
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Georgios Polyzos
- Ilias Belharouak
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Jordan Wright
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Matt Vick
- Michael Kirka
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Sana Elyas
- Subhabrata Saha
- Tony Beard
- Tyler Smith
- Vandana Rallabandi
- Vera Bocharova
- Vipin Kumar
- Xiang Lyu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provide additively manufactured thermal protection system.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).