Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Andrzej Nycz
- Beth L Armstrong
- Gabriel Veith
- Peeyush Nandwana
- Ritin Mathews
- Blane Fillingim
- Chris Masuo
- Guang Yang
- Michelle Lehmann
- Rangasayee Kannan
- Robert Sacci
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Tomonori Saito
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- Ethan Self
- J.R. R Matheson
- James J Nutaro
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Pratishtha Shukla
- Ryan Dehoff
- Scott Smith
- Sergiy Kalnaus
- Sudip Seal
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alexandra Moy
- Alexey Serov
- Alex Roschli
- Ali Passian
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- Amit Shyam
- Amy Elliott
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Gibson
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Chanho Kim
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Fred List III
- Georgios Polyzos
- Gordon Robertson
- Greg Corson
- Harper Jordan
- Ilias Belharouak
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Josh B Harbin
- Jun Yang
- Keith Carver
- Khryslyn G Araño
- Liam White
- Logan Kearney
- Luke Meyer
- Matthew S Chambers
- Michael Borish
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Pablo Moriano Salazar
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tomas Grejtak
- Tony L Schmitz
- Trevor Aguirre
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiang Lyu
- Yiyu Wang
- Yukinori Yamamoto

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.