Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Edgar Lara-Curzio
- Eric Wolfe
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Alexandre Sorokine
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Clinton Stipek
- Daniel Adams
- Frederic Vautard
- Jessica Moehl
- Kyle Kelley
- Marie Romedenne
- Nidia Gallego
- Philipe Ambrozio Dias
- Rishi Pillai
- Steven Randolph
- Taylor Hauser
- Tim Graening Seibert
- Viswadeep Lebakula
- Weicheng Zhong
- Wei Tang
- Xiang Chen

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.