Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Edgar Lara-Curzio
- Yong Chae Lim
- Zhili Feng
- Eric Wolfe
- Jian Chen
- Rangasayee Kannan
- Steven J Zinkle
- Wei Zhang
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Alexander Enders
- Alexander I Wiechert
- Benjamin Manard
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bryan Lim
- Charles F Weber
- Charles Hawkins
- Christopher S Blessinger
- Costas Tsouris
- Dali Wang
- Frederic Vautard
- Govindarajan Muralidharan
- Isaac Sikkema
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Kunal Mondal
- Mahim Mathur
- Marie Romedenne
- Matt Vick
- Mingyan Li
- Nidia Gallego
- Oscar Martinez
- Peeyush Nandwana
- Priyanshi Agrawal
- Rishi Pillai
- Roger G Miller
- Rose Montgomery
- Ryan Dehoff
- Sam Hollifield
- Sarah Graham
- Sudarsanam Babu
- Thomas R Muth
- Tim Graening Seibert
- Tomas Grejtak
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yiyu Wang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.