Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Amit K Naskar
- Edgar Lara-Curzio
- Jun Qu
- Ying Yang
- Alex Plotkowski
- Amit Shyam
- Corson Cramer
- Frederic Vautard
- James A Haynes
- Jaswinder Sharma
- Logan Kearney
- Meghan Lamm
- Michael Toomey
- Nihal Kanbargi
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Tomas Grejtak
- Yanli Wang
- Yutai Kato
- Adam Willoughby
- Alice Perrin
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Bowland
- Christopher Ledford
- David J Mitchell
- Eric Wolfe
- Ethan Self
- Felix L Paulauskas
- Gabriel Veith
- Gerry Knapp
- Holly Humphrey
- James Klett
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peeyush Nandwana
- Rangasayee Kannan
- Rishi Pillai
- Robert E Norris Jr
- Santanu Roy
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.