Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Ilias Belharouak
- Edgar Lara-Curzio
- Kyle Kelley
- Rama K Vasudevan
- Ali Abouimrane
- Eric Wolfe
- Ruhul Amin
- Sergei V Kalinin
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Anton Ievlev
- Bishnu Prasad Thapaliya
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- David L Wood III
- Frederic Vautard
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Junbin Choi
- Kevin M Roccapriore
- Liam Collins
- Lu Yu
- Marie Romedenne
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Rishi Pillai
- Stephen Jesse
- Steven Randolph
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yaocai Bai
- Yongtao Liu
- Zhijia Du

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.