Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Edgar Lara-Curzio
- Brian Gibson
- Eric Wolfe
- Joshua Vaughan
- Luke Meyer
- Mike Zach
- Steven J Zinkle
- Udaya C Kalluri
- William Carter
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Akash Jag Prasad
- Amit Shyam
- Andrew F May
- Annetta Burger
- Ben Garrison
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bruce Moyer
- Calen Kimmell
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Frederic Vautard
- Gautam Malviya Thakur
- Gordon Robertson
- Hsin Wang
- J.R. R Matheson
- James Gaboardi
- James Klett
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- Jesse McGaha
- John Lindahl
- John Potter
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Marie Romedenne
- Nedim Cinbiz
- Nidia Gallego
- Padhraic L Mulligan
- Riley Wallace
- Rishi Pillai
- Ritin Mathews
- Sandra Davern
- Tim Graening Seibert
- Todd Thomas
- Tony Beard
- Vincent Paquit
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaohan Yang
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.