Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Joseph Chapman
- Jun Qu
- Nicholas Peters
- Rangasayee Kannan
- Sudarsanam Babu
- Ying Yang
- Yong Chae Lim
- Blane Fillingim
- Corson Cramer
- Eric Wolfe
- Hsuan-Hao Lu
- James A Haynes
- Joseph Lukens
- Lauren Heinrich
- Meghan Lamm
- Muneer Alshowkan
- Ryan Dehoff
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Zhili Feng
- Adam Stevens
- Adam Willoughby
- Alice Perrin
- Andres Marquez Rossy
- Anees Alnajjar
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Claire Marvinney
- David J Mitchell
- Dean T Pierce
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Harper Jordan
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jian Chen
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peter Wang
- Priyanshi Agrawal
- Rishi Pillai
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Srikanth Yoginath
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- Wei Zhang
- William Peter
- Xiang Chen
- Yiyu Wang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.