Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Edgar Lara-Curzio
- Chad Steed
- Eric Wolfe
- Junghoon Chae
- Mingyan Li
- Sam Hollifield
- Steven J Zinkle
- Travis Humble
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Weber
- Bruce A Pint
- Charles Hawkins
- Frederic Vautard
- Isaac Sikkema
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Marie Romedenne
- Mary A Adkisson
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Prashant Jain
- Rishi Pillai
- Samudra Dasgupta
- Tim Graening Seibert
- T Oesch
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and