Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Neutron Sciences Directorate (11)
Researcher
- Amit K Naskar
- Adam Willoughby
- Andrzej Nycz
- Chris Masuo
- Jaswinder Sharma
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Rishi Pillai
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Arit Das
- Bekki Mills
- Benjamin L Doughty
- Brandon Johnston
- Bruce A Pint
- Bruce Hannan
- Charles Hawkins
- Christopher Bowland
- Dave Willis
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- Jiheon Jun
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Marie Romedenne
- Mark Loguillo
- Matthew B Stone
- Peter Wang
- Polad Shikhaliev
- Priyanshi Agrawal
- Robert E Norris Jr
- Santanu Roy
- Shannon M Mahurin
- Sumit Gupta
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Uvinduni Premadasa
- Vasilis Tzoganis
- Vasiliy Morozov
- Vera Bocharova
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yong Chae Lim
- Yun Liu
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Neutron beams are used around the world to study materials for various purposes.