Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Beth L Armstrong
- Chris Masuo
- Peter Wang
- Alex Walters
- Amit Shyam
- Jun Qu
- Adam Willoughby
- Alex Plotkowski
- Brian Gibson
- Corson Cramer
- James A Haynes
- Joshua Vaughan
- Luke Meyer
- Meghan Lamm
- Rishi Pillai
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Ben Lamm
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bryan Lim
- Calen Kimmell
- Charles Hawkins
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Clay Leach
- David J Mitchell
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Gordon Robertson
- J.R. R Matheson
- James Klett
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiheon Jun
- John Potter
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Priyanshi Agrawal
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Tolga Aytug
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Ying Yang
- Yiyu Wang
- Yong Chae Lim
- Zhili Feng

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.