Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- William Carter
- Adam Willoughby
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Rishi Pillai
- Ryan Dehoff
- Vincent Paquit
- Adam Stevens
- Akash Jag Prasad
- Alex Walters
- Amy Elliott
- Brandon Johnston
- Bruce A Pint
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charles Hawkins
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Erin Webb
- Evin Carter
- Isha Bhandari
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jeremy Malmstead
- Jiheon Jun
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Marie Romedenne
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yong Chae Lim
- Yukinori Yamamoto
- Zackary Snow
- Zhili Feng

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.