Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Hongbin Sun
- Adam Willoughby
- Prashant Jain
- Rishi Pillai
- Vincent Paquit
- Akash Jag Prasad
- Brandon Johnston
- Bruce A Pint
- Calen Kimmell
- Canhai Lai
- Charles Hawkins
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Ian Greenquist
- Ilias Belharouak
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jiheon Jun
- Marie Romedenne
- Nate See
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Ruhul Amin
- Ryan Dehoff
- Thien D. Nguyen
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Yong Chae Lim
- Zackary Snow
- Zhili Feng

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.