Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Adam Willoughby
- Ali Abouimrane
- Rishi Pillai
- Ruhul Amin
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- David L Wood III
- Debraj De
- Gautam Malviya Thakur
- Georgios Polyzos
- Hongbin Sun
- Hsin Wang
- James Gaboardi
- James Klett
- Jaswinder Sharma
- Jesse McGaha
- Jiheon Jun
- John Lindahl
- Junbin Choi
- Kevin Sparks
- Liz McBride
- Lu Yu
- Marie Romedenne
- Marm Dixit
- Mike Zach
- Nedim Cinbiz
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Todd Thomas
- Tony Beard
- Xiuling Nie
- Yaocai Bai
- Yong Chae Lim
- Zhijia Du
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a system and method of needling of veiled AS4 fabric tape.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.