Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Adam Willoughby
- Brian Gibson
- Joshua Vaughan
- Luke Meyer
- Mike Zach
- Rishi Pillai
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Amit Shyam
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bruce Moyer
- Calen Kimmell
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Gordon Robertson
- Hsin Wang
- J.R. R Matheson
- James Gaboardi
- James Klett
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- Jesse McGaha
- Jiheon Jun
- John Lindahl
- John Potter
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Marie Romedenne
- Nedim Cinbiz
- Padhraic L Mulligan
- Priyanshi Agrawal
- Riley Wallace
- Ritin Mathews
- Sandra Davern
- Todd Thomas
- Tony Beard
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

The technologies provide a system and method of needling of veiled AS4 fabric tape.